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Abstract

Heavy ARP traffic can cause routers to run out of resources. Therefore, AMS-
IX developed a daemon called ARP Sponge. When the number of ARP requests
for an IP address exceeds a threshold, the ARP Sponge starts sending ARP replies
which keeps ARP traffic down. The ARP Sponge currently works using IPv only.

IPv uses Neighbor Discovery (ND) instead of ARP for address resolution. ND
uses the solicited-node multicast address instead of broadcast, consuming less re-
sources from routers. Therefore, IPv support should not necessary, though it still
can be used to detect network problems and legacy router configurations.

We tested this on an emulation of the AMS-IX platform, both the current version
and its new version, yet to be introduced, based on MPLS/VPLS and with various
customer platforms and found that IPv support need (and maybe should) not be
implemented.
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C 

INTRODUCTION AND

BACKGROUNDS

. Introduction to AMS-IX

The Amsterdam Internet Exchange (AMS-IX) offers customers a layer  platform
to exchange IP traffic. Internet service providers (ISPs), content providers and
other Internet related organisations from all over the world are connected to AMS-
IX. They use the AMS-IX to communicate with each other directly using a shared
infrastructure, rather than expensive dedicated or transit connections.

Currently, AMS-IX has  members using a total of  ports generating a peak
throughput of  gigabits per second. The Border Gateway Protocol, version
 [Rekhter et al., ] (BGP) is used to exchange routing information between
members.

Continuity is very important for AMS-IX. An outage of only a few seconds can
cause connection issues all over the world. To prevent that from happening, AMS-
IX wants its platform to be as transparant and failsafe as possible. Therefore, only
the use of certain protocols is allowed on the main ISP peering LAN.

. AMS-IX topology overview

The currently used topology is called AMS-IXv. The next version, AMS-IXv, is
planned to replace AMS-IXv in late .

.. AMS-IXv

Both logically and physically, AMS-IXv implements a star topology. It centers
around a Foundry Networks NetIron MLX- Ethernet switch. The MLX-
is connected to smaller edge switches, which are located at different places in

http://www.ams-ix.net/
http://www.ams-ix.net/connected/
http://www.ams-ix.net/technical/allowed.html
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Amsterdam. Customers connect to the edge switches in various ways, depending
on their port speed. A diagram is shown in figure ..
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Figure .: AMS-IXv. Diagram supplied by AMS-IX.

AMS-IXv handles redundancy by having a failover network ready to take over.
The core switches and  Gigabit Ethernet (GbE) edge switches are all installed
as pairs. Failover is done using the Virtual Switch Redundancy Protocol (VSRP),
a Foundry-proprietary protocol. GbE customers are connected to an optical
cross-connect which, in case of a fail-over situation, switches over customers to
their redundant switch. The two networks are visualised in the diagram as red and
blue.

The most important issue with AMS-IXv is scalability. There are currently no
Ethernet switches available with enough GbE ports to accomodate the needs
of AMS-IX in the near future. Switches with GbE ports would solve this
problem, but won’t be available until the GbE standard is defined by IEEE.
Because of GbE being unavailable for some time to come, AMS-IX has decided
to implement a more scalable topology, called AMS-IXv.

.. AMS-IXv

To be scalable, AMS-IXv has four core switches active at the same time. The
plaform is designed to scale up to more core switches if necessary. To construct an
Ethernet broadcast domain, Virtual Private Lan Service (VPLS) is used to connect
all nodes on layer . VPLS will be supported by Multiprotocol Label Switching
(MPLS), allowing AMS-IX to do load-balancing and other forms of traffic engi-
neering. The edge switches will decide which core switch to use. The core switches
forward traffic based on MPLS labels instead of Ethernet source addresses. The
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core switches are not aware of VPLS and only switch based on MPLS labels.

This set-up is visualised in figure .. Some parts are still based on link-failover,
these parts are blue and red. Other parts in black are always active. All edge
switches connect to all core switches. This allows for optimum load balancing of
traffic.
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Figure .: AMS-IXv. Diagram supplied by AMS-IX.

With AMS-IXv, failover is replaced by redundancy. All edge switches are con-
nected to both core switches. In a normal situation, traffic is load-balanced over
all four core switches. If one fails, the another one can take over the workload.

. Problems caused by too much ARP traffic

On Ethernet networks, the Address Resolution Protocol [Plummer, ] (ARP)
is used to find the MAC-address for a given IPv address.

ARP uses Ethertype 0x0806 together with Ethernet broadcasting. A node will
broadcast an ARP Request packet to ask for the MAC address of an unknown IPv
address. The node using the requested IP address replies (using regular unicast)
with an ARP Reply packet, which includes its MAC address.

In order to work, it is important that all nodes using IPv listen for ARP packets
and reply to them if necessary. The nodes therefore need to process all Ethernet
broadcast messages with Ethertype 0x0806. For each ARP packet, they must
decide whether or not to reply.

Processing ARP packets can take a lot of processing power. Because all ARP pack-
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ets need to be examined in order for ARP to work, processing ARP packets may
take precedence over other activities, depending on the Operating System. As
such, when there is a lot of ARP traffic, routers may be unable to do other pro-
cessing tasks like maintaining BGP sessions.

This problem was noticed on AMS-IX when the ISP peering LAN was renum-
bered to new IPv addresses. Members in the new IPv range were trying to reach
members in the old IPv range and vice versa. Larger amounts of ARP packets
than usual crossed the network, consuming all available processing power on some
customer routers, not leaving enough to process BGP in a timely manner, result-
ing in lost BGP sessions. Other routers started sending ARP packets to reestablish
these BGP sessions, resulting in an ARP storm that brought even more routers
down.

. ARP Sponge – the AMS-IX solution

To help routers survive heavy ARP traffic, AMS-IX decided to try keeping the
amount of ARP traffic down. For this purpose, AMS-IX developed a daemon,
written in Perl, called ARP Sponge.

The ARP Sponge listens on the ISP peering LAN for ARP traffic. When the
number of ARP Requests for a certain IP address exceeds a threshold, the ARP
Sponge sends out an ARP Reply for that IP address using its own MAC address.
From that moment, the IP address is sponged: all traffic to that node is sent to
the ARP Sponge. This prevents ARP storms because it keeps the amount of ARP
traffic down.

When the interface of a sponged IP address comes up again, it generally sends out
a gratuitous ARP request packet [Perkins, ]. This is an ARP packet with both
source and destination IP address set to the IP address of the node sending the
packet. It is used mostly in case the MAC-address changed, so that other nodes
can update their ARP caches.

When the ARP Sponge receives any traffic from a sponged IP address (including
but not limited to gratuitous ARP requests, ARP requests for other nodes, BGP
peering initiations, etc.), it ceases sponging the IP address, thus no longer sending
out ARP replies for that IP address.





.. Effects and behaviour

From the start, the ARP Sponge has been sponging IP addresses continuously.
There are two reasons for this. First, with over  members it is likely that, at any
given moment, one or more nodes are down. Second, sometimes ARP Request
packets are sent for IP addresses that are no longer in use or haven’t been used at
all. Two typical cases are outdated BGP configurations and network probes.

The ARP sponge results in a significant decrease in ARP requests on the network.
For instance, on May th,  the ARP sponge was down for more than one
hour due to a request from a customer. The average number of ARP packets per
minute in that month was about ,. During the outage, a peak of , ARP
packets per minute was measured, almost ten times as much as normal. Fifteen
minutes after the ARP Sponge was restarted, the amount ARP traffic was reduced
to its normal rate of about , packets per minute.

One of the interesting side-effects of the ARP Sponge is that traffic destined to
nodes that don’t exist or don’t exist anymore is diverted to the sponge machine.
This allows AMS-IX some insight into customers who have not cleaned up their
routers’ BGP configurations when peers have disappeared. It is likely that this
problem will be more prevalent with IPv as IPv addresses are re-used while IPv
addresses are not necessarily; this is up to the customers.

. Research question

What differences are there between IPv and IPv as relating to the ARP Sponge
and infrastructure, and is an IPv implementation of the ARP Sponge necessary?





C 

EXTENDING THE ARP SPONGE

WITH IPV SUPPORT

. Currently

The current version op the ARP Sponge only deals with address resolution requests
for IPv. For IPv address resolution, a different protocol, Neighbor Discovery
[Narten et al., ] (ND), is used. ND is part of IPv, making use of ICMPv
packets. This is in contrast to ARP, which is separately defined from IPv and has
a different ethertype. Parts of the ND protocol need to be implemented in order
for the ARP Sponge to deal with IPv address sponging.

. IPv ARP versus IPv Neighbour Discovery

ND offers more than just address resolution in IPv. The replacements for ARP
Requests and ARP Replies are called Neighbour Solicitations and Neighbour Ad-
vertisements respectively. The neighbour discovery in IPv is also capable of dis-
covering routers on the local subnet, but this is out of scope for this document.

One of the most important differences between ARP and ND is the way messages
are distributed. ARP uses Ethernet broadcast messages while ND uses multi-
cast messages. This difference seems subtle as multicasting on ethernet is mostly
treated as broadcasting, but has some interesting effects.

Neighbour Advertisements, when sent unsolicited to mirror the function of gra-
tuitous ARPs, are relevant to all nodes and are therefore sent to the all-nodes mul-
ticast address, ff02::1. This allows all nodes in the local broadcast domain to
receive them. In effect, this is technically a multicast message but as it is received
by all IPv-capable nodes it can be considered a broadcast. Unsolicited advertise-
ments are relatively rare, occuring mostly after a node has started operations on
the network or changed its address.

In contrast, Neighbour Solicitations are only relevant to the node using the IPv
address of which the MAC address is requested. Neighbour Solicitations are very
similar to ARP requests with the very important difference that they are sent to the
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solicited-node multicast address, ff02::1:ffXX:XXXX. This is an IPv multicast
address, created from the last three octets of the node’s IPv unicast address which
take the place of the X-characters. IPv multicast addresses map to an Ethernet
multicast address, making them usable for address resolution. As with the all-
nodes address, while the solicited-node address is technically a multicast address,
Ethernet currently treats this as a broadcast address. All nodes therefore receive
these notifications at their interfaces so they may process them if they are relevant
(i.e., in the right multicast group) and reply if needed.

As a result of mapping the unicast address to a multicast group address, nodes
are only in the same multicast group if the last three octets of their IPv unicast
address match. In case of autoconfiguration, this typically isn’t the case because
those last three octets are normally also the last three octets of the node’s MAC-
address.

The benefit of using the solicited-node address is that nodes only receive Neighbor
Solicitations that are likely to be relevant to them. This is by design and eliminates
the need to process the content of all Neighbor Solicitations. Irrelevant Neighbour
Solicitation packets can be quickly discarded because they were not sent to the
right multicast group. This requires much less processing power as it can be done
quickly and efficiently in hardware. All nodes still receive the message at their
NICs, but these can ignore those that are not addressed to a subscribed multicast
group.

.. Practically on AMS-IX

In the specific case of AMS-IX, unicast addresses are not generated by using MAC-
addresses but by using the customer’s Autonomous System number followed by
a number for the specific router. An AMS-IX peering LAN IPv address uses
the prefix 2001:07f8:0001:0000:0000:a5. Appended is the customer’s Au-
tonomous System number and a router sequence number. The router sequence
number is to be chosen by the customer, but generally starts at  and is increased
by  for each subsequent router.

For example, for AS’s first router, the unicast address on the AMS-IX peering
lan would be 2001:07f8:0001:0000:0000:a500:1200:0001. The last three
octets of this address are 00:00:01. This node would thus join the solicited-
node multicast address ff02::1:ff00:0001. This multicast address then maps
in a similar way, using the last  octets of the IPv multicast group address and
prepending 33:33, to an ethernet address, in this case 33:33:FF:00:00:01.

http://www.iana.org/assignments/ipv-multicast-addresses/
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A customer using a different AS-number, for instance AS, uses a slightly
different unicast address. The first IPv router for this AS would be addressed
2001:7f8:1::a500:1103:1 (abbreviated), the last three octets being 03:00:01.
The corresponding multicast group therefore is ff02::1:ff03:0001 with the as-
sociated ethernet address 33:33:FF:03:00:01. This is different from the address
used above, so it can be easily detected and ignored.

There exists one possible pitfall: because of how the AS-number is ‘encoded’ into
the IPv unicast address, multiple customers could still share a single multicast
group. Customers of which the last two digits of their respective AS-numbers
match will have routers in the same multicast group using this addressing scheme.
For instance, customers with AS-numbers , , and even  will use the
same multicast group.

AMS-IX has published a list of all IPv and IPv addresses is use on the ISP peer-
ing LAN.. With that list, we have calculated the maximum and average number
of hosts in an Ethernet multicast group. We found that at most  nodes are in
the same Ethernet multicast group in the current situation. The average number
of nodes in an Ethernet multicast group is .. This was done by counting how
many known nodes shared the last two digits of the AS number.

The number of nodes sharing an Ethernet multicast group can be alleviated some-
what by moving the AS-number in the IPv unicast address backwards slightly,
occupying more of the last three octets of which the second one will in most cases
be 00. However ultimately this scheme will always overlap somewhat. Another
option is to vary the last two octets such that a more unique number is used in-
stead of simply a sequential number. As this number has no meaning to AMS-IX,
it can be anything meaningful to the customer or even randomly chosen.

. Reasons for adding IPv ND support

The main purpose of the ARP Sponge is to limit ARP traffic to save processing
power on customers’ routers. With IPv, address resolution needs much less pro-
cessing power because of the use of multicast for Neighbour Solicitations. There-
fore, sponging IPv addresses may not save as much processing power on customer
routers as sponging IPv addresses.

To test this, we built a test setup in the AMS-IX laboratory to measure the differ-
ence in processor load between ARP and ND. In chapter ., the test setups are
explained. In chapter ., the results of the tests are explained.

http://www.ams-ix.net/connected/table/
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Besides limiting address resolution traffic, the ARP Sponge maintains a list of
sponged IP addresses. AMS-IX considers this information because it can show the
existence of network problems in an early stage. Sponged addresses can be nodes
that are down, but also nodes that don’t exist anymore, for example nodes that are
mentioned in legacy BGP configurations.

Another use for a list of sponge IP addresses is limiting the impact of ping sweeps.
Ping sweeps can result in an ARP or ND storms and are therefore potentially
harmful.

Ping sweeps may seem rare but occur on AMS-IX on a regular basis. Some cus-
tomers use tools that use ping sweeps to search for new nodes in the network.
AMS-IX uses arpwatch to detect new nodes in the network and ping sweeps to
test customer router reachability. Ping sweeps from outside the AMS-IX network
may be started by hackers or botnets and can be used for host discovery as well as
Denial of Service attacks.

. Pitfalls with IPv support

.. List of sponged addresses

The ISP peering LAN uses a / prefix for its IPv subnet. The maximum number
of addresses on a / subnet is , so the list of sponged IPv addresses will never
grow beyond  entries. Even when the sponge is used on a / network, the
list of potentially sponged addresses is of a manageable length,  addresses.
For its IPv subnet, AMS-IX uses a / prefix, as is standard practice in IPv
subnetting. This makes the possible number of IPv addresses on the subnet 264,
or ,,,,,,. Maintaining a list of all sponged IPv addresses
will be impossible over time, especially when a ping sweep is used to iterate (parts
of ) the address space.

A solution to this problem is to list only the most relevant sponged IPv addresses.
There are several way to determine the relevance of a sponged address. One way is
to look at the time elapsed since the address became sponged. This can be imple-
mented as a timeout mechanism, just like ARP caches have. With this solution,
the size of the list is variable.

One way to limit the size of the list is to use a ring buffer. A ring buffer always
accepts new entries. When the buffer is full, the oldest entry is replaced. This
prevents the list from getting too long; it has a fixed maximum size.

http://www-nrg.ee.lbl.gov/
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Currently, the ARP Sponge uses one list for sponged IP addresses. Another ap-
proach is to use a combination of a ring buffer and a white list. The white list
contains all IP addresses that are known to exist because they have been seen trans-
mitting traffic on the network. This list can be generated from received Neighbour
Solicitations as well as onsolicited Neighbour Advertisements.

Addresses that appear on the whitelist are considered to exist and require sponging
if necessary. This allows the sponge to differenciate between addresses that exist
and always have them in the list of potentially sponged addresses, while addresses
that are not known to exist can be kept in an expiring list such as a ring buffer. It
also allows to set different timeouts and/or thresholds.

.. Neighbour caches

Another pitfall exists. All nodes keep caches of neighbours, aptly named the neigh-
bour cache. This is a list of IPv addresses and the associated MAC addresses,
parallel to the ARP cache used in IPv. Once a Neighbour Solicitation is sent
out for an address, it is placed in the cache as ‘incomplete’. If the solicitation is
answered, the entry is marked ‘reachable’. If not, the entry is removed from the
cache after a timeout. While an entry is in the cache, the node actively keeps
track of the reachability of the neighbour. If it receives acknowledgement packets
from the neighbour (signifying the ability of the neighbour to receive and process
packets), the cache entry is again marked as ‘reachable’. If nothing happens for
a determined time, the entry is marked ‘stale’. Depending on the circumstances,
this means either the entry will time out and be removed after a longer time or
a unicast neighbour solicitation is sent to the node, starting the process from the
beginning. The latter is done only if the node is actively sending packets to the
neighbour, such as when it is trying to set up a BGP session.

It is possible to fill a routing node’s neighbour cache with entries if an IPv sponge
were to exist and answer Neighbour Solicitations. This can be done simply by
sending enough pings to each address to trigger the sponge. As with the sponge’s
lists as discussed above, this list could quickly grow to very large sizes, potentially
causing a Denial of Service if the list is consistently filled to its maximum size.
All that is needed is a host behind the router (or multiple for greater effect), able
to send a number of IPv packets addressed to random addresses inside the IPv
peering LAN subnet.

AMS-IX currently recommends customers to set their routers’ ARP and Neigh-
bour cache timeouts to at least two hours, or preferably even four. This practice,
while useful in keeping ARP requests and Neighbour Solicitations to a minimum
during normal operation, makes it even easier to fill up neighbour caches by ex-
tending greatly the time given to do so.
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C 

EFFECTS OF ARP AND ND ON

AMS-IX

To determine the necessity of an IPv ND Sponge, it is necessary to know what
effects on switch and customer equipment performance large amounts of ND
traffic has, and how this relates to ARP traffic. For this we set up a number of
experiments.

. Introduction to AMS-IXv

The main difference between AMS-IXv and AMS-IXv is the number of active
core switches. AMS-IXv has one active core switch and one hot-standby switch
for failover, while AMS-IXv has multiple active core switches at the same time.
This replaces failover with redundancy and makes traffic engineering (e.g. load
balancing) possible.

AMS-IX offers a layer  platform for exchanging IP traffic. A pure layer  platform
can not contain multiple possible routes between two points, as this would cause
packets (in particular broadcast packets) to loop and multiply every time they were
processed by a switch. AMS-IXv will use Multiprotocol Label Switching (MPLS)
and Virtual Private LAN Service (VPLS) to create an Ethernet broadcast domain
on top of an MPLS-based network. Because there is a clear distinction between
inter-switch links (of which there is a full-mesh) and connections to customer
equipment, the looping problem can be avoided by never flooding traffic to other
switches if it was not received from an end-node.

.. MPLS for load-balancing

The MPLS protocol [Rosen et al., ] was originally designed to speed up rout-
ing in a network. The first MPLS router a packet crosses, called Label Edge
Router, decides which predefined Label Switched Path (LSP) a packet will take
through the MPLS network. It attaches the corresponding label to the packet and
sends it to the next MPLS router.

All subsequent MPLS routers will read the label and forward the packet based
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on that label. This differs from IP routing, where the destination IP address is
matched against a list of prefixes. MPLS does label swapping rather than routing:
in MPLS, routing decisions are made on Label Edge Routers only.

These days, routers do IP routing in hardware. This takes away the performance
advantage of MPLS because IP routing is nearly as fast as packet switching. There-
fore, the main reason for MPLS in AMS-IXv is traffic engineering.

The edge switches act as Label Edge Routers, adding labels to all packets before
forwarding. Four LSPs are defined from each edge switch to another edge switch,
one over each core. The edge switches do load-balancing over all LSPs. The core
switches are not VPLS-aware, they simply switch MPLS packets.

.. VPLS to create a broadcast domain

MPLS creates a network on top of Ethernet, between Ethernet and IP. As such, it
is often called layer .. AMS-IXv uses VPLS [Lasserre and Kompella, ] to
create an Ethernet broadcast domain on top of an MPLS network using RSVP-
TE [Awduche et al., ] for label distribution. All edge nodes have two LSPs
between eachother, for redundancy. VPLS combines this into a usable ethernet
broadcast-domain without loops.

In VPLS, a Provider Edge (PE) thus emulates an Ethernet switch on top of a layer
. network. VPLS routers in a network establish a full mesh. This involves two
steps: discovery and signaling. Discovery is about locating other VPLS routers.
Signaling is the process of establishing virtual Ethernet connections, which are
called pseudo-wires.

To provide any-to-any connectivity, VPLS routers forward Ethernet traffic to each
other, similar to generic Ethernet switches. VPLS uses split-horizon to prevent
loops in the network.

. Theoretical effects of AMS-IXv switch on hardware

Customer routers are unaware of MPLS and VPLS. All they see is an Ethernet
broadcast domain. To customer routers, the switch to AMS-IXv is invisible. The
change therefore will not affect customer equipment at all with regard to ARP or
ND.

The role of the edge switches will change. Besides Ethernet switching, they have
to act as Label Edge Routers and VPLS PEs. We expect this to mean that the
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amount of processing per packet will increase slightly, due to the added functions
of deciding what labels to attach, what LSPs to use, etc.

. Test setups to verify theoretical effects

.. Lab setup AMS-IXv

Our AMS-IXv lab setup consists of two routers, a Juniper M and a Cisco ,
connected in a layer  VLAN to a traffic generator and a Linux machine. While
using only a single switch, this setup emulates the current AMS-IX network setup,
using GbE, GbE and Fast Ethernet ports.

Schematically the network looks as seen in figure ..

Figure .: Lab setup AMS-IXv

.. Lab setup AMS-IXv

The AMS-IXv lab setup, like the above, consists of the Juniper M, Cisco 
and Linux machine, but this time the nodes are connected to a switch with the
relevant ports set to be in a VPLS instance.

Schematically this looks like figure .. The switch is now represented by a VPLS
cloud.
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VPLS

Figure .: Lab setup AMS-IXv

. Tests

We tested five different kinds of ARP and ND-traffic for the routers and two for
the switches. For the routers, these kinds were:

• ARP requests relevant to the node (i.e., requests for its IP)

• ARP requests not relevant to the node (i.e., requests for another IP)

• Neighbour Solicitations relevant to the node

• Neighbour Solicitations not relevant to the node

• Neighbour Solicitations not relevant to the node, but in one of its multicast
groups

For the switches we tested only irrelevant ARP requests and Neighbour Solicita-
tions, as the layer  addressing is not relevant to Ethernet in this case. Using
irrelevant requests (for a non-existent IP address) allows us to see the load caused
only by the broadcast/multicast requests without that of the unicast answers.

To avoid measuring noise, we used elevated amounts of traffic, sending in all cases
, frames per second. This is decidedly higher than AMS-IX is likely to see,
but allows us to see more accurately the amount of processing needed for our
traffic rather than the processing needed to process other packets, such as those
generated by our collecting of the values.

However, it would be if such features are ARP Protection were enabled.
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Measurements from the Juniper and Cisco routers were collected using SNMP,
measurements from the Linux machine using vmstat locally. Measurements were
averaged over one minute.

In a normal situation on AMS-IX, the switches limit the amount of broadcast
and multicast frames that are processed and/or forwarded to  and ,
respectively. To achieve more accurate results, we disabled these limits for testing.

.. Results

The results of our tests are displayed in the following tables. All values are in
percents of CPU utilisation.

Nodes

ARP host ARP other ND host ND other ND group
Juniper M     
Cisco      
Linux     

The Juniper M has no trouble handling k ARP requests in either case. Relevant
requests cause a very slightly higher amount of activity, which is to be expected as
it requires generating and sending an answer as well as processing the request. It
appears to be much less optimised for handling Neighbour Discovery, as sending
the exact same amount of Neighbour Solicitations per second caused the CPUs
involved to be resource-starved. It handles irrelevant neighbour solicitations very
well – this showed no activity at all. The CPUs involved are those of the For-
warding Engine Board (FEB) and the Flexible PIC Concentrator (FPC). These
are tasked with packet processing. The main CPU, which runs the OS, had no
measurable involvement in the process.

The Cisco requires most of its (main) CPU to handle the ARP packets, and the
same goes for IPv. The results for relevant ARP and ND are within expectations,
but the non-relevant ND causes the CPU to be loaded as much as non-relevant
ARPs and Non-relevant group-addressed ND, suggesting this platform does not
program its MACs to filter out relevant ethernet addresses.

The Linux machine, being a full-fledged computer, allows slightly more insight
into what is happening. Sending it kpps of ARP traffic shows almost no CPU
load; less than two percent in both cases. This can be explained by the network
interface card offloading this task from the main CPU. This is confirmed by read-
ing through the source code for the driver. On this platform we could monitor
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the amount of interrupts occurring during our tests. During relevant ARP-testing,
interrupt-levels rose to approximately  per second, from  while idle. Ir-
relevant ARPs caused half that amount. During relevant ND testing, however,
between  and  interrupts were generated. During irrelevant group-
adressed testing, roughly  interrupts were generated per second. Subtracting
the  interrupts per second when idle, this amounts to one interrupt per packet.
It is obvious from the irrelevant ND test that the MACs on the ethernet card in
this host are programmed with ethernet addresses to filter on: Neighbour Solici-
tations sent to another multicast group generated no increase in interrupt levels at
all.

Note, though that this is not specific to Linux nor will every instance of Linux
show these results. Whether or not these results can be duplicated is dependent
on the NIC used and if its driver supports offloading features; these results apply to
any generic PC with such features enabled. In our tests, we used an Intel EI
BASE-SX Ethernet card. This card supports offloading ARP and various
IPv-features such as checksums. It does not support anything with regard to
IPv.

Switches

We tested using the switches AMS-IX currently uses in AMS-IXv and plans to
use in AMS-IXv: Foundry Networks (now Brocade) MLX-series switches. Our
tests relate only to the Provider Edge switches, so we tested using the MLX- type
switch as this type would be used for this purpose.

The test results for the switches are displayed in the table below. Although we
tested this on two different switches to verify the results, they were identical and
are thus only displayed once. These figures represent the usage of the CPU of the
line card on which the frames were received. We set up our tests so multiple line
cards would be included to test if any other CPU was involved. This was not the
case.

ARP L ARP VPLS ND L ND VPLS
Foundry    

As can be seen, k frames per second of Layer  broadcast/multicast traffic cause
the line card CPU utilisation to reach  to  percent depending on the protocol.
In the case of sending the the traffic over a VPLS instance, this rises to  or %.
Sending ND packets caused slightly less load than ARP packets.

Except, of course, while the NIC was in promiscuous mode.
http://download.intel.com/design/network/manuals/x_GBe_SDM.pdf
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The slight difference between ARP and ND in both cases we cannot explain di-
rectly because of lack of insight into the inner workings of the switch. We sus-
pected the slightly different frame size to be of influence, but testing showed that
utilisation did not differ between sending fabricated packets (non-ARP and non-
ND) of the the two lengths ( bytes for ARP and  bytes for ND) to broadcast
and multicast addresses. On the other hand, sending packets of any length with
the ethertype for ARP set but no other data inserted causes the utilisation to rise
to % when the switch is set to an L-configuration. The same frame with the
ethertype set to that to anything else shows the same as earlier tests. This suggests
the switch is doing some form of processing on ARP frames but does not do so
for IPv ND frames. Unfortunately no more information on this could be found.

These results also tell us that the switch to MPLS/VPLS will cause slightly more
resource utilisation on the switch for processing ARP and ND frames. The in-
crease is similar for both protocols, however. It need therefore not be separately
considered as being more or less problematic.
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C 

CONCLUSION

The problem of ARP causing large amounts of interrupts in connected hardware
are long known. It was thought of when IPv Neighbour Discovery was invented.
As such, in IPv the problem appears to have been solved, at least well enough that
on ‘regular’ networks the problem should not occur at all anymore. We define
normal in this case as using stateless autoconfiguration and being of relatively
limited size. With stateless autoconfiguration, nodes use their MAC-address to
generate their unicast address. The chances of using the same multicast group in
such cases are one in 224.

With the enlarged subnet size comes the problem of keeping track of all these
addresses. This problem occurs both in the ARP sponge, which must keep track
of addresses so it can decide when to start sponging, and in attached nodes as they
must keep track of addresses to be able to communicate. Using an ND sponge
opens up a possibility for launching a Denial of Service attach against the attached
router equipment.

On the other hand the sponge provides a useful service: it allows AMS-IX net-
work engineers to see traffic that would normally silently disappear. In cases where
routers are configured to communicate with other routers so as to exchange rout-
ing information with them (peering) and one of these routers is decomissioned,
AMS-IX engineers can detect which routers are still attempting to communicate
with the router that has disappeared.

Our recommendation is currently to not implement an IPv-capable version of
the ARP-sponge. However, if the above service is important and the sponge is
implemented, care must be taken to avoid the pitfalls described in this document.

. Future Work

On some switching platforms it is possible to create layer  Access Control Lists.
These lists allow a switch to decide to forward a frame (or not) depending on its
source and/or destination MAC address. As layer  unicast IPv addresses map
to a layer  ethernet multicast Ethernet address, it might be possible to limit the
effects of an ARP sponge filling neighbour caches using this feature if the IPv
addresses are structured similarly to how they are on AMS-IX. The effects of such
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an approach on a switching platform and its effectiveness could be studied.
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